Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Experimental Neurobiology ; : 329-336, 2019.
Article in English | WPRIM | ID: wpr-763771

ABSTRACT

Alzheimer's Disease (AD) is a progressive neurodegenerative disease, which is pathologically defined by the accumulation of amyloid plaques and hyper-phosphorylated tau aggregates in the brain. Mitochondrial dysfunction is also a prominent feature in AD, and the extracellular Aβ and phosphorylated tau result in the impaired mitochondrial dynamics. In this study, we generated an induced pluripotent stem cell (iPSC) line from an AD patient with amyloid precursor protein (APP) mutation (Val715Met; APP-V715M) for the first time. We demonstrated that both extracellular and intracellular levels of Aβ were dramatically increased in the APP-V715M iPSC-derived neurons. Furthermore, the APP-V715M iPSC-derived neurons exhibited high expression levels of phosphorylated tau (AT8), which was also detected in the soma and neurites by immunocytochemistry. We next investigated mitochondrial dynamics in the iPSC-derived neurons using Mito-tracker, which showed a significant decrease of anterograde and retrograde velocity in the APP-V715M iPSC-derived neurons. We also found that as the Aβ and tau pathology accumulates, fusion-related protein Mfn1 was decreased, whereas fission-related protein DRP1 was increased in the APP-V715M iPSC-derived neurons, compared with the control group. Taken together, we established the first iPSC line derived from an AD patient carrying APP-V715M mutation and showed that this iPSC-derived neurons exhibited typical AD pathological features, including a distinct mitochondrial dysfunction.


Subject(s)
Humans , Alzheimer Disease , Amyloid , Brain , Carisoprodol , Immunohistochemistry , Mitochondrial Dynamics , Neurites , Neurodegenerative Diseases , Neurons , Pathology , Plaque, Amyloid , Pluripotent Stem Cells
2.
The Korean Journal of Physiology and Pharmacology ; : 237-249, 2019.
Article in English | WPRIM | ID: wpr-761792

ABSTRACT

Confirming the direct link between neural circuit activity and animal behavior has been a principal aim of neuroscience. The genetically encoded calcium indicator (GECI), which binds to calcium ions and emits fluorescence visualizing intracellular calcium concentration, enables detection of in vivo neuronal firing activity. Various GECIs have been developed and can be chosen for diverse purposes. These GECI-based signals can be acquired by several tools including two-photon microscopy and microendoscopy for precise or wide imaging at cellular to synaptic levels. In addition, the images from GECI signals can be analyzed with open source codes including constrained non-negative matrix factorization for endoscopy data (CNMF_E) and miniscope 1-photon-based calcium imaging signal extraction pipeline (MIN1PIPE), and considering parameters of the imaged brain regions (e.g., diameter or shape of soma or the resolution of recorded images), the real-time activity of each cell can be acquired and linked with animal behaviors. As a result, GECI signal analysis can be a powerful tool for revealing the functions of neuronal circuits related to specific behaviors.


Subject(s)
Animals , Behavior, Animal , Brain , Calcium Channels , Calcium , Carisoprodol , Endoscopy , Fires , Fluorescence , Ions , Microscopy , Neuronal Calcium-Sensor Proteins , Neurons , Neurosciences , Statistics as Topic
3.
International Neurourology Journal ; : S23-S33, 2018.
Article in English | WPRIM | ID: wpr-740031

ABSTRACT

PURPOSE: To evaluate the expression of glial cell line-derived neurotrophic factor (GDNF) and its receptor, GDNF family receptor alpha subunit 1 (GFRα-1) in the pelvic (middle third) vagina and, particularly, in the paravaginal ganglia of nulliparous and primiparous rabbits. METHODS: Chinchilla-breed female rabbits were used. Primiparas were killed on postpartum day 3 and nulliparas upon reaching a similar age. The vaginal tracts were processed for histological analyses or frozen for Western blot assays. We measured the ganglionic area, the Abercrombie-corrected number of paravaginal neurons, the cross-sectional area of the neuronal somata, and the number of satellite glial cells (SGCs) per neuron. The relative expression of both GDNF and GFRα-1 were assessed by Western blotting, and the immunostaining was semiquantitated. Unpaired two-tailed Student t -test or Wilcoxon test was used to identify statistically significant differences (P≤0.05) between the groups. RESULTS: Our findings demonstrated that the ganglionic area, neuronal soma size, Abercrombie-corrected number of neurons, and number of SGCs per neuron were similar in nulliparas and primiparas. The relative expression of both GDNF and GFRα-1 was similar. Immunostaining for both GDNF and GFRα-1 was observed in several vaginal layers, and no differences were detected regarding GDNF and GFRα-1 immunostaining between the 2 groups. In the paravaginal ganglia, the expression of GDNF was increased in neurons, while that of GFRα-1 was augmented in the SGCs of primiparous rabbits. CONCLUSIONS: The present findings suggest an ongoing regenerative process related to the recovery of neuronal soma size in the paravaginal ganglia, in which GDNF and GFRα-1 could be involved in cross-talk between neurons and SGCs.


Subject(s)
Female , Humans , Rabbits , Blotting, Western , Carisoprodol , Ganglia , Ganglion Cysts , Glial Cell Line-Derived Neurotrophic Factor , Nerve Growth Factors , Neuroglia , Neuronal Plasticity , Neurons , Postpartum Period , Reproduction , Vagina
4.
Experimental Neurobiology ; : 120-128, 2018.
Article in English | WPRIM | ID: wpr-714114

ABSTRACT

µ-opioid receptor (MOR) is a class of opioid receptors with a high affinity for enkephalins and beta-endorphin. In hippocampus, activation of MOR is known to enhance the neuronal excitability of pyramidal neurons, which has been mainly attributed to a disinhibition of pyramidal neurons via activating Gαi subunit to suppress the presynaptic release of GABA in hippocampal interneurons. In contrast, the potential role of MOR in hippocampal astrocytes, the most abundant cell type in the brain, has remained unexplored. Here, we determine the cellular and subcellular distribution of MOR in different cell types of the hippocampus by utilizing MOR-mCherry mice and two different antibodies against MOR. Consistent with previous findings, we demonstrate that MOR expression in the CA1 pyramidal layer is co-localized with axon terminals from GABAergic inhibitory neurons but not with soma of pyramidal neurons. More importantly, we demonstrate that MOR is highly expressed in CA1 hippocampal astrocytes. The ultrastructural analysis further demonstrates that the astrocytic MOR is localized in soma and processes, but not in microdomains near synapses. Lastly, we demonstrate that astrocytes in ventral tegmental area and nucleus accumbens also express MOR. Our results provide the unprecedented evidence for the presence of MOR in astrocytes, implicating potential roles of astrocytic MOR in addictive behaviors.


Subject(s)
Animals , Mice , Antibodies , Astrocytes , Behavior, Addictive , beta-Endorphin , Brain , Carisoprodol , Enkephalins , gamma-Aminobutyric Acid , Hippocampus , Interneurons , Microscopy, Electron , Neurons , Nucleus Accumbens , Presynaptic Terminals , Pyramidal Cells , Receptors, Opioid , Synapses , Ventral Tegmental Area
5.
The Korean Journal of Physiology and Pharmacology ; : 721-729, 2018.
Article in English | WPRIM | ID: wpr-728031

ABSTRACT

GABAergic control over dopamine (DA) neurons in the substantia nigra is crucial for determining firing rates and patterns. Although GABA activates both GABA(A) and GABA(B) receptors distributed throughout the somatodendritic tree, it is currently unclear how regional GABA receptors in the soma and dendritic compartments regulate spontaneous firing. Therefore, the objective of this study was to determine actions of regional GABA receptors on spontaneous firing in acutely dissociated DA neurons from the rat using patch-clamp and local GABA-uncaging techniques. Agonists and antagonists experiments showed that activation of either GABA(A) receptors or GABA(B) receptors in DA neurons is enough to completely abolish spontaneous firing. Local GABA-uncaging along the somatodendritic tree revealed that activation of regional GABA receptors limited within the soma, proximal, or distal dendritic region, can completely suppress spontaneous firing. However, activation of either GABA(A) or GABA(B) receptor equally suppressed spontaneous firing in the soma, whereas GABA(B) receptor inhibited spontaneous firing more strongly than GABA(A) receptor in the proximal and distal dendrites. These regional differences of GABA signals between the soma and dendritic compartments could contribute to our understanding of many diverse and complex actions of GABA in midbrain DA neurons.


Subject(s)
Animals , Rats , Carisoprodol , Dendrites , Dopamine , Dopaminergic Neurons , Fires , gamma-Aminobutyric Acid , Mesencephalon , Neurons , Receptors, GABA , Receptors, GABA-A , Substantia Nigra , Trees
6.
Experimental Neurobiology ; : 113-121, 2017.
Article in English | WPRIM | ID: wpr-93437

ABSTRACT

Bestrophin-1 (Best1) is a calcium-activated anion channel identified from retinal pigment epithelium where human mutations are associated with Best's macular degeneration. Best1 is known to be expressed in a variety of tissues including the brain, and is thought to be involved in many physiological processes. This review focuses on the current state of knowledge on aspects of expression and function of Best1 in the brain. Best1 protein is observed in cortical and hippocampal astrocytes, in cerebellar Bergmann glia and lamellar astrocytes, in thalamic reticular neurons, in meninges and in the epithelial cells of the choroid plexus. The most prominent feature of Best1 is its significant permeability to glutamate and GABA in addition to chloride ions because glutamate and GABA are important transmitters in the brain. Under physiological conditions, both Best1-mediated glutamate release and tonic GABA release from astrocytes modulate neuronal excitability, synaptic transmission and synaptic plasticity. Under pathological conditions such as neuroinflammation and neurodegeneration, reactive astrocytes phenotypically switch from GABA-negative to GABA-producing and redistribute Best1 from the perisynaptic microdomains to the soma and processes to tonically release GABA via Best1. This implicates that tonic GABA release from reactive astrocyte via redistributed Best1 is a common phenomenon that occur in various pathological conditions with astrogliosis such as traumatic brain injury, neuroinflammation, neurodegeneration, and hypoxic and ischemic insults. These properties of Best1, including the permeation and release of glutamate and GABA and its redistribution in reactive astrocytes, promise us exciting discoveries of novel brain functions to be uncovered in the future.


Subject(s)
Humans , Astrocytes , Brain Injuries , Brain , Carisoprodol , Choroid Plexus , Epithelial Cells , gamma-Aminobutyric Acid , Glutamic Acid , Ions , Macular Degeneration , Meninges , Neuroglia , Neuronal Plasticity , Neurons , Permeability , Physiological Phenomena , Retinal Pigment Epithelium , Synaptic Transmission
7.
Experimental Neurobiology ; : 158-167, 2017.
Article in English | WPRIM | ID: wpr-93432

ABSTRACT

Brain is a rich environment where neurons and glia interact with neighboring cells as well as extracellular matrix in three-dimensional (3D) space. Astrocytes, which are the most abundant cells in the mammalian brain, reside in 3D space and extend highly branched processes that form microdomains and contact synapses. It has been suggested that astrocytes cultured in 3D might be maintained in a less reactive state as compared to those growing in a traditional, two-dimensional (2D) monolayer culture. However, the functional characterization of the astrocytes in 3D culture has been lacking. Here we cocultured neurons and astrocytes in 3D and examined the morphological, molecular biological, and electrophysiological properties of the 3D-cultured hippocampal astrocytes. In our 3D neuron-astrocyte coculture, astrocytes showed a typical morphology of a small soma with many branches and exhibited a unique membrane property of passive conductance, more closely resembling their native in vivo counterparts. Moreover, we also induced reactive astrocytosis in culture by infecting with high-titer adenovirus to mimic pathophysiological conditions in vivo. Adenoviral infection induced morphological changes in astrocytes, increased passive conductance, and increased GABA content as well as tonic GABA release, which are characteristics of reactive gliosis. Together, our study presents a powerful in vitro model resembling both physiological and pathophysiological conditions in vivo, and thereby provides a versatile experimental tool for studying various neurological diseases that accompany reactive astrocytes.


Subject(s)
Adenoviridae , Astrocytes , Brain , Carisoprodol , Coculture Techniques , Extracellular Matrix , gamma-Aminobutyric Acid , Gliosis , In Vitro Techniques , Membranes , Neuroglia , Neurons , Synapses
8.
Korean Journal of Physical Anthropology ; : 13-23, 2013.
Article in Korean | WPRIM | ID: wpr-199852

ABSTRACT

This study assessed the dynamics of morphological and immunophenotypic properties of activated microglia in a 6-hydroxydopamine (6-OHDA) induced Parkinsonian animal model. Neurodegeneration in the substantia nigra pars compacta (SNc) was induced by unilateral injection of 6-OHDA into the medial forebrain bundle. Parkinsonian animal model were sacrificed at 1, 2, 4 and 8 weeks after 6-OHDA injection. Changes in the functional activity of activated microglia were identified using different monoclonal antibodies: OX6 for major histocompatibility complex (MHC) class II, ED1 for phagocytic activity. Phagocytic microglia, characterized by ED1- or OX6-immunoreactivity, appeared in the SNc at 1 week after 6-OHDA injection, activated microglia selectively adhered to degenerating axons, dendrites and dopaminergic neuron somas in the SNc. This was followed by significant loss of these fibers and nigral dopaminergic neurons. Activation of microglia into phagocytic stage was most pronounced at 2 week after 6-OHDA injection and gradually subsided, but phagocytic microglia persisted until 8 weeks after 6-OHDA injection. Taken together, our results indicate that activated microglia is lead to persistently neuron cell death and promotes loss of dopaminergic neuron by degeneration of the dopaminergic neurons.


Subject(s)
Animals , Axons , Carisoprodol , Cell Death , Dendrites , Dopaminergic Neurons , Major Histocompatibility Complex , Medial Forebrain Bundle , Microglia , Models, Animal , Neurons , Oxidopamine , Substantia Nigra
9.
The Korean Journal of Physiology and Pharmacology ; : 343-348, 2012.
Article in English | WPRIM | ID: wpr-728298

ABSTRACT

Blocking or regulating K+ channels is important for investigating neuronal functions in mammalian brains, because voltage-dependent K+ channels (Kv channels) play roles to regulate membrane excitabilities for synaptic and somatic processings in neurons. Although a number of toxins and chemicals are useful to change gating properties of Kv channels, specific effects of each toxin on a particular Kv subunit have not been sufficiently demonstrated in neurons yet. In this study, we tested electrophysiologically if heteropodatoxin2 (HpTX2), known as one of Kv4-specific toxins, might be effective on various K+ outward currents in CA1 neurons of organotypic hippocampal slices of rats. Using a nucleated-patch technique and a pre-pulse protocol in voltage-clamp mode, total K+ outward currents recorded in the soma of CA1 neurons were separated into two components, transient and sustained currents. The extracellular application of HpTX2 weakly but significantly reduced transient currents. However, when HpTX2 was added to internal solution, the significant reduction of amplitudes were observed in sustained currents but not in transient currents. This indicates the non-specificity of HpTX2 effects on Kv4 family. Compared with the effect of cytosolic 4-AP to block transient currents, it is possible that cytosolic HpTX2 is pharmacologically specific to sustained currents in CA1 neurons. These results suggest that distinctive actions of HpTX2 inside and outside of neurons are very efficient to selectively reduce specific K+ outward currents.


Subject(s)
Animals , Humans , Rats , Brain , Carisoprodol , Cytosol , Membranes , Neurons
10.
Anatomy & Cell Biology ; : 38-46, 2012.
Article in English | WPRIM | ID: wpr-100675

ABSTRACT

In order to test if nestin is a useful marker for various types of progenitor cells, we explored nestin expression in the retina during development. Nestin expression was co-evaluated with bromodeoxyuridine (BrdU) labeling and Griffonia simplicifolia isolectin B4 (GSIB4) histochemistry. Nestin immunoreactivity appears in cell soma of dividing neural progenitor cells and their leading processes in retinas from embryonic day (E) 13 to E20, in accordance with a BrdU-labeled pattern. At postnatal day (P) 5, it is restricted to the end feet of Muller cells. BrdU-labeled nuclei were mainly in the inner part of the inner nuclear layer in postnatal neonates. The retinal vessels demarcated with GSIB4-positive endothelial cells were first distributed in the nerve fiber layer from P3. Afterward the vascular branches sprouted and penetrated deeply into the retina. The endothelial cells positive for GSIB4 and the pericytes in the microvessels were additionally immunoreactive for nestin. Interestingly, the presumed migrating microglial cells showing only GSIB4 reactivity preceded the microvessels throughout the neuroblast layer during vascular sprouting and extension. These findings may suggest that nestin expression represents the proliferation and movement potential of the neural progenitor cells as well as the progenitor cells of the endothelial cell and the pericyte during retinal development. Thus, Muller glial cells might be potential neural progenitor cells of the retina, and the retinal microvasculature established by both the endothelial and the pericyte progenitor cells via vasculogenesis along microglia migrating routes sustains its angiogenic potential.


Subject(s)
Humans , Infant, Newborn , Bromodeoxyuridine , Carisoprodol , Endothelial Cells , Foot , Griffonia , Intermediate Filament Proteins , Lectins , Microglia , Microvessels , Nerve Fibers , Nerve Tissue Proteins , Neurogenesis , Neuroglia , Pericytes , Plant Lectins , Retina , Retinal Vessels , Retinaldehyde , Stem Cells
11.
Annals of Rehabilitation Medicine ; : 477-484, 2011.
Article in English | WPRIM | ID: wpr-154025

ABSTRACT

OBJECTIVE: To investigate the clinical usefulness of the Schedule for Oral-Motor Assessment (SOMA) in children with dysphagia by comparing findings of SOMA with those of the videofluoroscopic swallowing study (VFSS). METHOD: Both SOMA and VFSS were performed in 33 children with dysphagia (21 boys and 12 girls; mean age 17.3+/-12.1 months) who were referred for oropharyngeal evaluation. Ratings of oral-motor functions indicated by SOMA were based upon the cutting score of each specific texture of food (puree, semi-solids, solids, cracker, liquid-bottle, and liquid-cup). Abnormalities of either the oral phase, or the pharyngeal phase as indicated by VFSS were assessed by a physician and a speech-language pathologist. RESULTS: There was significant consistency between the findings of SOMA and the oral phase evaluation by VFSS (Kappa=0.419, p=0.023). SOMA reached 87.5% sensitivity, 66.6% specificity, and 95.4% positive predictive value when compared with the oral phase of the VFSS. We were able to evaluate oral-motor function by using SOMA in 6 children who were unable to complete the oral phase evaluation by VFSS, due to fear and crying during the study. The findings of SOMA failed to show any consistency with the pharyngeal phase evaluation by VFSS (Kappa=-0.105, p=0.509). CONCLUSION: These results suggest that SOMA is a reliable method for evaluation of oral-motor function in children with dysphagia. In particular, SOMA is recommended for children that were unable to complete the oral phase evaluation by VFSS due to poor cooperation.


Subject(s)
Child , Humans , Appointments and Schedules , Carisoprodol , Crying , Deglutition , Deglutition Disorders , Sensitivity and Specificity
12.
Anatomy & Cell Biology ; : 25-34, 2011.
Article in English | WPRIM | ID: wpr-86994

ABSTRACT

The reaction of neuroactive substances to ischemic conditions in the rat retina evoked by different methods was immunochemically evaluated in adult Sprague-Dawley rats. Ocular ischemic conditions were unilaterally produced by elevating intraocular pressure (EIOP) or by middle cerebral artery occlusion (MCAO). Two EF-hand calcium binding proteins, calbindin D28K (CB) and calretinin (CR), in the normal retina showed similar immunolocalization, such as the amacrine and displaced amacrine cells, the ganglion cells, and their processes, particularly CB in horizontal cells. CB immunoreactive neurons in the ganglion cell layer in both types of ischemic retinas were more reduced in number than CR neurons compared to those in a normal retina. The CB protein level in both ischemic retinas was reduced to 60-80% of normal. The CR protein level in MCAO retinas was reduced to about 80% of normal but increased gradually to the normal value, whereas that in the EIOP showed a gradual reduction and a slight recovery. SMI32 immunoreactivity, which detects a dephosphorylated epitope of neurofilaments-M and -H, appeared in the axon bundles of ganglion cells in the innermost nerve fiber layer of normal retinas. The reactivity in the nerve fiber bundles appeared to only increase slightly in EIOP retinas, whereas a moderate increase occurred in MCAO retinas. The SMI32 protein level in MCAO retinas showed a gradual increasing tendency, whereas that in the EIOP showed a slight fluctuation. Interestingly, the MCAO retinas showed additional SMI32 immunoreactivity in the cell soma of presumed ganglion cells, whereas that of EIOP appeared in the Muller proximal radial fibers. Glial fibrillary acidic protein (GFAP) immunoreactivity appeared in the astrocytes located in the nerve fiber layer of normal retinas. Additional GFAP immunoreactivity appeared in the Muller glial fibers deep in EIOP retinas and at the proximal end in MCAO retinas. These findings suggest that the neurons in the ganglion cell layer undergo degenerative changes in response to ischemia, although EIOP retinas represented a remarkable Muller glial reaction, whereas MCAO retinas had only a small-scaled axonal transport disturbance.


Subject(s)
Adult , Animals , Humans , Rats , Amacrine Cells , Astrocytes , Axonal Transport , Axons , S100 Calcium Binding Protein G , Calcium-Binding Proteins , Carisoprodol , Ganglion Cysts , Glial Fibrillary Acidic Protein , Infarction, Middle Cerebral Artery , Intraocular Pressure , Ischemia , Middle Cerebral Artery , Nerve Fibers , Neurons , Rats, Sprague-Dawley , Reference Values , Retina
13.
The Korean Journal of Pain ; : 1-15, 2009.
Article in English | WPRIM | ID: wpr-116205

ABSTRACT

Neuropathic pain is often refractory to intervention because of the complex etiology and an incomplete understanding of the mechanisms behind this type of pain. Glial cells, specifically microglia and astrocytes, are powerful modulators of pain and new targets of drug development for neuropathic pain. Glial activation could be the driving force behind chronic pain, maintaining the noxious signal transmission even after the original injury has healed. Glia express chemokine, purinergic, toll-like, glutaminergic and other receptors that enable them to respond to neural signals, and they can modulate neuronal synaptic function and neuronal excitability. Nerve injury upregulates multiple receptors in spinal microglia and astrocytes. Microglia influence neuronal communication by producing inflammatory products at the synapse, as do astrocytes because they completely encapsulate synapses and are in close contact with neuronal somas through gap junctions. Glia are the main source of inflammatory mediators in the central nervous system. New therapeutic strategies for neuropathic pain are emerging such as targeting the glial cells, novel pharmacologic approaches and gene therapy. Drugs targeting microglia and astrocytes, cytokine production, and neural structures including dorsal root ganglion are now under study, as is gene therapy. Isoform-specific inhibition will minimize the side effects produced by blocking all glia with a general inhibitor. Enhancing the anti-inflammatory cytokines could prove more beneficial than administering proinflammatory cytokine antagonists that block glial activation systemically. Research on therapeutic gene transfer to the central nervous system is underway, although obstacles prevent immediate clinical application.


Subject(s)
Astrocytes , Carisoprodol , Central Nervous System , Chronic Pain , Cytokines , Ganglia, Spinal , Gap Junctions , Genetic Therapy , Microglia , Neuralgia , Neuroglia , Neurons , Synapses
15.
Korean Journal of Anatomy ; : 163-170, 2007.
Article in Korean | WPRIM | ID: wpr-644171

ABSTRACT

It has been previously reported that parvalbumin expression was downregulated in AII amacrine cells, while upregulated in a subset of cone bipolar cells electrically synapse with AII amacrine cell in the streptozotocin-induced diabetic rat retina. In the present study, we aimed to trace biochemical changes of pre-synaptic neurons to AII amacrine cells in rat retina following diabetic injury. Diabetic condition was induced by streptozotocin injection into Sprague-Dawley rats aged of 8 weeks. The experimental term of induced diabetes was set at 1, 4, 12 and 24 weeks. Changes of pre-synaptic neurons were evaluated by immunohistochemistry and Western blot analysis with anti-protein kinase C (PKC)-alpha and anti-tyrosine hydroxylase (TH) antibodies. Rod bipolar cells immunolocalized with PKC-alpha antibody extended their enlarged axon terminals into stratum 5 of the inner plexiform layer. In later diabetes, the axon was shorten and its terminals of rod bipolar cell are slightly enlarged. The protein levels of PKC-alpha were slightly increased along with the duration of diabetes. TH immunoreactive neurons are morphologically classified into two subtypes of amacrine cells in the inner nuclear layer: one (type 1) has large soma with long and primary dendrites, classified with dopaminergic, and the other (type 2) has small soma with dendritic arborization. In the outermost inner plexiform layer, ring-like structures being composed of type 1 cell processes were densely distributed. In diabetic retina, the intensity of TH immunoreactivity in type 1 neurons was reduced. In accordance with morphological changes, the protein levels of TH were reduced during diabetes. These results demonstrate that TH immunoreactive dopaminergic amacrine cells are more susceptible to diabetic injury than the rod bipolar cells in the rat retina and may suggest that downregulation of parvalbumin expression in AII amacrine cells of diabetic retina is mainly due to dysfunction of pre-synaptic dopaminergic amacrine cells.


Subject(s)
Animals , Rats , Amacrine Cells , Antibodies , Axons , Blotting, Western , Carisoprodol , Dendrites , Down-Regulation , Immunohistochemistry , Neurons , Phosphotransferases , Presynaptic Terminals , Rats, Sprague-Dawley , Retina , Streptozocin , Synapses
16.
Korean Journal of Physical Anthropology ; : 145-155, 2007.
Article in English | WPRIM | ID: wpr-123458

ABSTRACT

In the present study, we investigated the expression of apoptosis-associated proteins in the cerebellum of aged rats: IGF-I receptor (IGF-IR), nitrotyrosine (NT), p53, key pro-apoptotic gene ICH-1 (caspase-2), c-Fos and Bcl-2 family members (Bcl-2 and Bax). Twelve adult (4~6 month old) and 15 aged (24~29 month old) Sprague-Dawley rats were examined in this study. We performed immunohistochemical staining, in situ hybridization and densitometric measurement using a NIH image program (Scion Image) to determine the staining density. In adult rats, there were no immunoreactivities for insulin-like growth factor-I receptor (IGF-IR), nitrotyrosine (NT) or p53 in any region of cerebellum. However, IGF-IR immunoreactivity was found in some Purkinje cells in aged rat cerebellum. The prominent staining of NT or p53 was also localized in the Purkinje cell layer in aged rats. A high density of ICH-1 (caspase-2) immunoreactivity was observed in the molecular and Purkinje cell layers in aged rats. Immunoreactivity for c-Fos was significantly decreased in the granule cells in aged rats. Positive signal for bcl-2 was significantly decreased in the Purkinje cells and granule cells of aged rats. The most intense staining for Bax was observed in the soma of Purkinje cells of adult rats. However, Bax immunoreactivity was not changed in any layers in the cerebellar cortex of aged rats. In conclusion, this study provides the first morphological data concerning the differential regulation of apoptosisrelated genes in rat cerebellum during aging.


Subject(s)
Adult , Animals , Humans , Rats , Aging , Carisoprodol , Cerebellar Cortex , Cerebellum , Immunohistochemistry , In Situ Hybridization , Neurons , Purkinje Cells , Rats, Sprague-Dawley , Receptor, IGF Type 1
17.
Acta ortop. bras ; 14(1): 11-16, 2006. tab, graf
Article in Portuguese | LILACS | ID: lil-432605

ABSTRACT

OBJETIVO: Testar eficácia e segurança da associação de diclofenaco, paracetamol, carisoprodol e cafeína, no tratamento da lombalgia e lombociatalgia agudas, comparadas à eficácia e segurança da ciclobenzaprina. DESENHO DO ESTUDO: Ensaio clínico unicêntrico, randomizado, duplo-cego, comparativo. MÉTODO: As medicações foram administradas 3 vezes ao dia por um período de 7 dias. GRUPO ESTUDADO: 108 pacientes com diagnóstico de lombalgia e lombociatalgia agudas nos últimos 7 dias foram randomizados, sendo 54 em cada grupo. DESFECHO: Os critérios de eficácia primários selecionados para o estudo foram escala visual analógica para dor e questionário de Roland Morris, cujos resultados de antes e depois do tratamento foram comparados. Os secundários foram avaliação global do tratamento pelo paciente e pelo investigador e uso da medicação analgésica de resgate. Os critérios de segurança foram análise de tolerabilidade, interrupção da medicação por evento adverso e exames laboratoriais. RESULTADO: Não houve diferença estatística entre os grupos, em relação à eficácia, em nenhum dos desfechos analisados. Ambas as medicações mostraram-se seguras e toleráveis no tratamento da lombalgia e da lombociatalgia agudas. A análise estatística rigorosa mostrou diferença nos dois grupos apenas no que se refere aos eventos adversos, sendo mais freqüentes no grupo que foi tratado com a ciclobenzaprina.


Subject(s)
Humans , Male , Female , Adolescent , Adult , Middle Aged , Acetaminophen/administration & dosage , Caffeine/administration & dosage , Carisoprodol/administration & dosage , Diclofenac/administration & dosage , Low Back Pain/drug therapy , Low Back Pain , Clinical Trials as Topic , Comparative Study , Double-Blind Method , Randomized Controlled Trials as Topic
18.
The Journal of the Korean Rheumatism Association ; : 218-225, 2006.
Article in Korean | WPRIM | ID: wpr-34697

ABSTRACT

OBJECTIVE: We studied the expression of pain-related molecules such as substance P involved in chronic pain of fibromyalgia syndrome (FMS) patients using rat cortical cells in hypoxia. METHODS: We sacrificed pregnant Sprague-Dawley rat and got embryo. We cultured the cortical cells and compared the expression of pain-related molecules in 1st, 3rd, 5th day cortical cells exposed to hypoxia (37 degrees C, 5% CO2, 98% N2) to control by immunohistochemistry. We measured the density at soma using softwear 'Scion image'. RESULTS: The expression of substance P was increased in hypoxic cortical cell group than control (control mean: 49.9 vs. hypoxia 1st day: 75.4 (p<0.001), 3rd day: 65.6 (p<0.001), 5th day: 79.9 (p<0.001)). The expression of kainate receptor was increased in hypoxic cortical cell group than control (control mean: 58.4 vs. hypoxia 1st day: 64.9 (p<0.001), 3rd day: 63.3 (p<0.001), 5th day: 62.9 (p<0.001)). The expression of N-methyl-D-aspartate receptor 2B was increased in hypoxic cortical cell group than control (control mean : 59.4 vs. hypoxia 1st day: 60.8 (p<0.001), 3rd day: 62.6 (p<0.001), 5th day: 67.1 (p<0.001)). But, the expression of calcitonin gene related peptide was decreased in hypoxic cortical cell group than control (control mean: 76.8 vs. hypoxia 1st day: 76.4 (p<0.001), 3rd day: 71.5 (p<0.001), 5th day: 61.3 (p<0.001)). CONCLUSION: Hypoxia during night could increase the expression of some pain-related molecules, which might be the cause of chronic pain in FMS patients.


Subject(s)
Animals , Humans , Rats , Hypoxia , Calcitonin Gene-Related Peptide , Carisoprodol , Chronic Pain , Embryonic Structures , Fibromyalgia , Glutamic Acid , Immunohistochemistry , N-Methylaspartate , Rats, Sprague-Dawley , Receptors, Kainic Acid , Substance P
19.
Cancer Research and Treatment ; : 84-91, 2006.
Article in English | WPRIM | ID: wpr-58678

ABSTRACT

PURPOSE: This study was undertaken to determine the parotid gland tolerance dose levels following intensity modulated radiation therapy (IMRT) for treating patients who suffered with head and neck cancer. MATERIALS AND METHODS: From February 2003 through June 2004, 34 head and neck patients with 6 months of follow-up were evaluated for xerostomia after being treated by IMRT. Their median age was 59 years (range: 29~78). Xerostomia was assessed using a 4-question xerostomia questionnaire score (XQS) and a test for the salivary flow rates (unstimulated and stimulated: USFR and SSFR, respectively). The patients were also given a validated LENT SOMA scale (LSS) questionnaire. Evaluations were performed before IMRT and at 1, 3 and 6 months after IMRT. RESULTS: All 34 patients showed significant changes in the XQS, LSS and Salivary Flow rates (USFR and SSFR) after IMRT. No significant changes in the XQS or LSS were noted in 12 patients who received a total parotid mean dose of 3,100 cGy, significant increases in the XQS and LSS were observed. The USFR and SSFR from the parotid glands in 7 patients who received 2,750 cGy were significantly lower than the baseline values at all times after IMRT. CONCLUSION: We suggest that the total parotid mean dose should be limited to < or =2,750 cGy to preserve the USFR and SSFR and so improve the subsequent quality of life.


Subject(s)
Humans , Carisoprodol , Follow-Up Studies , Head and Neck Neoplasms , Head , Neck , Parotid Gland , Quality of Life , Xerostomia , Surveys and Questionnaires
20.
Korean Journal of Psychopharmacology ; : 81-90, 2006.
Article in Korean | WPRIM | ID: wpr-167868

ABSTRACT

OBJECTIVE: It has been well known that alcohol can modulate several ligand-gated ion channel and voltage-gated ion channels. But the roles of alcohol in the autonomic neurons still remain unclear. In this study, thus we characterized the neuronal acetylcholine receptor (nnAChRs) and investigated the modulation of nnAChRs by ethanol (EtOH). METHODS: We used whole-cells which were acutely dissociated male rat major pelvic ganglion (MPG) neurons, and used gramicidin perforated patch clamp techniques. RESULTS: MPG neurons can be classified on the basis of the response of the soma membrane to depolarizing current pulses ; either tonic or phasic neurons. Sympathetic neurons expressing T-type Ca(2+) channels showed tonic firing pattern, while parasympathetic neurons lacking T-type Ca(2+) channels phasic firing to depolarizing current pulses. When hyperpolarizing currents were injected, sympathetic neurons produced post-anodal rebound spikes, while parasympathetic neurons were silent. Under current clamp mode, Acetylcholine (ACh) evoked significant membrane depolarization and produced subsequently marked membrane hyperporization. Under whole-cell mode, application of ACh-induced inward currents held at holding potentials below 0 mV and reversal potential was close to 0 mV, an equilibrium potential of nonselective cation channel. The ACh-activated current was blocked by methyllycaconitine (MLA ; 10 micrometer), hexamethonium (100 micrometer) and alpha-bungarotoxin (alpha-BuTx ; 100 nM), nAChRs antagonists. EtOH (40 mM) potentiated ACh-induced depolarization and hyperpolarization. EtOH also increased both alpha-BuTx-sensitive and -insensitive ACh-activated currents. Futhermore, EtOH potentiated 5-HT-activated current but had a little effect on GABA-activated current. CONCLUSION: These results suggest that EtOH modulates nnAChRs and 5-HT receptors in MPG neurons.


Subject(s)
Animals , Humans , Male , Rats , Acetylcholine , Bungarotoxins , Carisoprodol , Ethanol , Fires , Ganglia, Autonomic , Ganglion Cysts , Gramicidin , Hexamethonium , Ion Channels , Membranes , Neurons , Patch-Clamp Techniques , Receptors, Nicotinic , Receptors, Serotonin
SELECTION OF CITATIONS
SEARCH DETAIL